

0040-4020(94)00960-0

Stereoconvergent Synthesis of Enantiopure (-)-trans-Lauthisan. Building Kit for Medium Ring Oxacycle Construction and Contrathermodynamic Epimerization at Allylic Carbon C(8) via "Invisible", E-Configurated Medium Ring Olefin.

H. M. R. Hoffmann,* Arndt Brandes

Department of Organic Chemistry, University of Hannover, D-30167 Hannover, Germany

Abstract: Starting once more from simple, acyclic, functionalized α,α' -chiral, disecondary ethers we have prepared enantiomerically pure (-)-trans-lauthisan (which is thermodynamically less stable than its cis-epimer). During a Pd(0) catalyzed cyclization a strained E-configurated, 8-membered allylic ether (as an η^2 palladium complex) is believed to be a reactive intermediate, in which the oxygen of the allylic ether attains leaving group status and recloses contrathermodynamically and stereoconvergently to isolated α,α' -trans configurated medium ring ether. The 9-membered rings (cf. preceding paper) are suggested to be formed by an analogous sequence.

Among the variety of medium ring ethers which occur in Nature, lauthisan, 8 both racemic and enantiomerically pure 1,2 has been a test case for synthetic access to this class of compounds. In continuation of previous work on a) the synthesis of acyclic α,α' -chiral disecondary ethers with full stereocontrol 3 b) successful medium ring closure via Pd(0)-assisted cyclization and c) controlled epimerization of the ethyl substituted allylic centre to the less stable, trans configurated diastereomer on cyclization 4 we now illustrate our approach to the 8-membered lauthisan. Modifying the synthesis of the acyclic precursor as described for the 9-membered rings 4 slightly (Scheme 1), we employed again monoprotected butane-1,2-diol (1), which was allowed to react under BF3 catalysis with enantiomerically pure epoxy tosylate 2, carrying an n-hexyl chain at C(3). Treatment of the intermediate alcohol tosylate with K_2CO_3 in situ afforded key precursor 3 (15.4 g, 83% overall) in a one pot procedure. The required excision of the terminal methylene carbon of the epoxide in 3 was carried out by chemoselective acid-catalyzed hydrolysis with an excess of water at 80 °C to the diol 4, oxidative cleavage of the diol with NaIO₄ [acid buffer at 0 °C prevents racemization of the stereodefined centre at C(2)] and immediate reduction of the sensitive aldehyde with NaBH₄ in situ to the alcohol 5 (2 steps, quantitative yield).

Introduction of a good leaving group was carried out under standard conditions, giving the terminal alkyl iodide. Since S_N^2 reactions on ethers bearing the leaving group β to the ether oxygen are known to be sluggish, optimization was required for the alkylation with deprotonated (pK_a ~ 11) bis(phenylsulfonyl)methane. Preparation of the neat tetra-n-butylammonium ion pair allowed a high concentration of nucleophile in a suitable solvent mixture (DMF/benzene, 2:1) and after 6 h at 100 °C we obtained bis sulfone 6 in 69% yield from 5.

Scheme 1. Synthesis of Acyclic Lauthisan Precursor.

Attempted deprotection of the benzyl ether 6 with Pd/C was not successful (poisoning by sulfur). The hard/soft combination of BF₃/SMe₂ furnished alcohol 7 in satisfactory yield.

Generation of the necessary allylic moiety was carried out as described for the 9-membered ring by a) oxidation to aldehyde 8, b) Horner-Wittig reaction of crude 8 to α,β -unsaturated ester 9, c) reduction to allylic alco-hol 10 followed by introduction of a leaving group (65% yield overall from alcohol 7).

Following the previous protocol⁴ we used carbonate as a leaving group and only obtained 6-membered ring in poor yield (Scheme 2, entry 1). At higher temperature (refluxing dioxane, 102 °C) conversion was higher, but again only 6-membered ring was formed (entry 2), also with $P(OEt)_3$ as a ligand (entry 5). Use of a better leaving group as in 11-Cl (entry 3) allowed cyclization at lower temperature, but again only 6-membered ring was formed. In order to improve the chances for kinetic control and formation of the less stable 8-membered ring, we decided to render the $(\eta^3$ -allyl)palladium system more electrophilic by choosing a better π acceptor ligand than dppe, in combination with the better leaving group chloride.

Scheme 2. Diastereoselective Pd(0)-Cyclization of the 8-Ring Precursor.

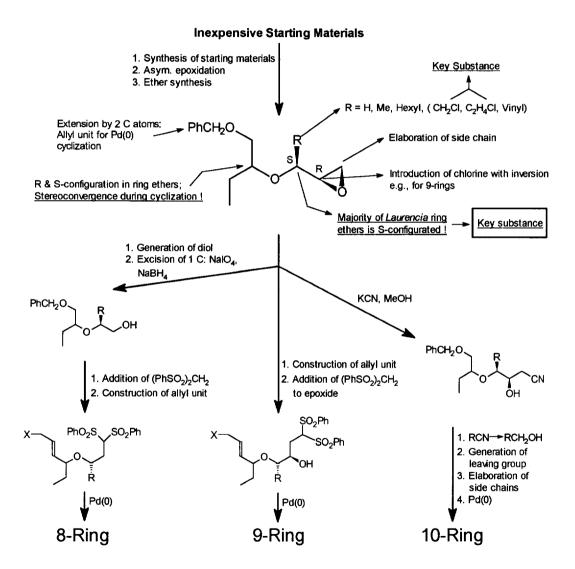
T.	1.1.	1
	me	

Entry	Leaving group in 11-X	Base	Ligand	Solvent	Temp [° C]	Yield [%]	Ratio 12 : A : B : C 8-Ring : 6-Ring
1	Carbonate		dppe	THF	66	9	0:1
2	Carbonate		dppe	dioxane	102	59	0:1:1:1.15 0:1
3	Chloride	NaH	dppe	THF	66		6-Ring only
4	Chloride	NaH	P(OEt) ₃	THF	66	67	1.9 : 3 : 1.15 : 1 1 : 2.7
5	Carbonate		P(OEt) ₃	dioxane	102		6-Ring only
6	Chloride	KH	P(OEt) ₃	THF/dioxane 2:1	80	74	4.7 : 3.5 : 1 : 1.2 <i>I</i> : 1.2
7	Chloride	KH	"biphosphite"	THF/dioxane 2:1	80	77 57, 1.7 g	15.8 : 3.3 : 1.2 : 1 2.9 : I

The combination chosen in entry 4 provided 8-membered ring for the first time. In a further modification a slightly higher temperature (THF/dioxane, 2:1, 80 °C) and potassium hydride instead of sodium hydride as base improved the chemical yield of cyclization product (74%) and also the selectivity towards 8-membered ring (entry 6). The best result (entry 7) was achieved by adding a solution of deprotonated (with KH) bis sulfone 11-Cl in a mixture of THF/dioxane (2:1) to refluxing solution of Pd₂(dba)₃CHCl₃ (5 mol%) and ligand "biphosphite"⁵ (60 mol%) with a syringe pump over a period of 6 h at 80 °C (57% yield of 12, 1.7 g isolated). Diastereomerically pure (which is also enantiomerically pure) lauthisane precursor 12 was isolated, although the precursor 11-Cl had been racemic with respect to the carbon attached to the ethyl side chain!

We think that the formation of lauthisan precursor 12 might proceed as follows. The syn-configurated (η^3 -allyl)palladium complex i is thermodynamically favoured and rendered more electrophilic by the backbonding "biphosphite" ligand and chloride leaving group. Intramolecular nucleophilic attack by the bulky bis(phenylsulfonyl) carbanion occurs at the more accessible methylene terminus in a kinetically controlled reaction. The E-configurated cyclic olefin is generated as an "invisible" intermediate, while palladium switches from η^3 complexation in i to η^2 complexation of the strained double bond in ii. The activated allylic ether

moiety in ii undergoes stereoelectronically favourable carbon-oxygen bond heterolysis to an entirely new (η^3 -allyl)palladium complex with two secondary termini [C(6),C(8) instead of C(5),C(7) as in i]. Several stereoisomeric (η^3 -allyl)palladium complexes are now accessible. In the final, irreversible ring forming step(s) palladium migrates such as to minimize nonbonded repulsions. After decomplexation (12-PdL₂ \rightarrow 12 + PdL₂), the contrathermodynamic,⁶ less stable trans-lauthisan precursor 12 arises in enantiomerically pure form!


It is remarkable that the 6-membered ether iii is not formed, in contrast to the formation of A, B and C (Scheme 2). However, in the formation of A, B and C a simple exocyclic vinyl group arises. In the case of 6-membered ring iii an exocyclic butenylidenyl group would have to be generated, also in the transition state leading to iii. Because of the additional ethyl substituent η^2 complexation by Pd(0) is sterically less favourable in iii than in either A, B or C.

Scheme 3. From Acyclic Precursor 11-Cl to Enantiomerically Pure 2S,8S-Pentahydrooxocin 12. "Invisible" E-Configurated, 8-Membered Ringolefin as Postulated Reactive Intermediate.

We think that the 9-membered rings described in the preceding part⁴ are formed by a similar sequence, in which the siloxy group allows additional steric control by minimizing nonbonded repulsion. Attempts to equilibrate either diastereomerically pure cis- or trans-configurated, unsaturated 9-ring ether (Scheme 4, preceding paper) under cyclization conditions were not successful. Thus, only a strained and "invisible", E-configurated cyclic allylic ether is capable of ring opening by Pd(0).

Scheme 4. Synthesis of Enantiopure (-)-trans-Lauthisan⁸

Homogenously catalyzed hydrogenation of pentahydrooxocin 12 furnished oxocan 13, which was desulfonylated under standard conditions, yielding enantiomerically pure, unnatural (-)-trans-lauthisan (Scheme 4). All spectroscopic data are in excellent agreement with those of Paquette and Sweeney. Since our synthesis is stereoconvergent (or stereospecific) and furnishes the thermodynamically less stable trans epimer exclusively, our overall yield of 11% compares very favourably with previous work. Many medium ring ethers in Nature are indeed trans-configurated.

Scheme 5. Building Kit for Medium Ring Oxacycle Construction. Building Bricks, Key Reactions and a Key Substance.

In conclusion, a readily accessible acyclic building block has been transformed into 9-membered ring ethers as well as into 8-membered rings of the *Laurencia* family. A general building kit for the stereocontrolled synthesis of 8-, 9- and possibly 10-membered oxacycles is outlined in Scheme 5. All necessary side chains emanating from the α and α' carbon atoms of the ether can be chemodifferentiated and elaborated. Enantiomerically pure (-)-trans-lauthisan has been synthesized. An "invisible" E-configurated, η^2 -palladium complexed, 8-membered ether and 9-membered ring is proposed as a reactive intermediate. The *stereoconvergent*, and at the same time, contrathermodynamic strategy should by applicable to the synthesis of other medium rings.

Acknowledgments. We thank the Fonds der Chemischen Industrie for a PhD fellowship (to A. B.) and the Deutsche Forschungsgemeinschaft (Graduiertenkolleg Naturstofftransformationen) for support of our work.

Experimental

General.4

(2R, trans)-3-Hexyloxiranemethyl tosylate (2). 2-Nonenol (21.34 g, 0.15 mmol), Ti(OPr')₄ (2.23 mL, 7.5 mmol), (-)-DET (2.27 g, 11 mmol), molecular sieves (4.5 g) and TBHP (56 mL, 5.4 M in CH₂Cl₂) in CH₂Cl₂ (300 mL) were allowed to react according to the procedure of Sharpless¹⁰ to give (2R, trans)-3-hexyloxiran-methanol, 15.34 g (65%). To a solution of the epoxy alcohol (15.29 g, 96.6 mmol) and Et₃N (13.7 mL, 116 mmol) in CHCl₃ (200 mL) was added tosyl chloride (19.34 g, 101 mmol) at 0 °C. The mixture was stirred for 18 h at 0 °C and 24 h at r.t. Then 2 N HCl was added and the organic layer was washed with brine and dried (Na₂SO₄). After removal of the solvent the crude product was purified by chromatography (E/PE, 1 : 3) to afford 2, 25.75 g (85%), m. p. 39.5 - 41.5 °C. [α]_D²¹ = 36.8° (c = 1.21, CH₂Cl₂). IR (CHCl₃) ν 2956, 2860, 1596, 1464, 1368, 1228, 1176, 1020, 972 cm⁻¹; ¹H NMR δ 0.87 (t, ³J = 6 Hz, ³J + CH₃), 1.20 - 1.63 (m, 10 H, CH₂), 2.43 (s, 3 H, arom. CH₃), 2.78 (dt, ³J = 2, 6 Hz, 1 H, CHCH₂OTs), 2.93 (m, 1 H, CHCHCH₂OTs), 3.95 (dd, ³J = 6 Hz, ²J = 12 Hz, 1 H, CHHOTs), 4.20 (dd, ³J = 6 Hz, ²J = 12 Hz, 1 H, CHHOTs); ¹³C NMR δ 14.04 (-, CH₃), 21.60 (-, arom. CH₃), 22.51, 25.70, 28.94, 31.29, 31.66 (+, CH₂), 54.53 (-, CHCH₂OTs), 56.65 (-, CHCHCH₂OTs), 70.40 (+, CH₂OTs), 127.93 (-, arom. C), 129.96 (-, arom. C), 132.81 (+, arom. C), 145.09 (+, arom. C); MS m/z 312 (M⁺, 0), 227 (4), 155 (97), 91 (100).

(2R,3S)-3-[1-(Benzyloxy)-2-butoxy]-2-hydroxy-nonyl tosylate (3). A flame-dried flask was charged with epoxy tosylate 2 (18 g, 57.6 mmol) and alcohol 1 (19.6 g, 97.9 mmol) under N₂ atmosphere. CH₂Cl₂ (128 mL) was added and the mixture was cooled to 0 °C. BF₃:Et₂O (1.06 mL, 8.64 mmol) was added and the reaction mixture was allowed to reach r.t. After stirring for 20 h the solvent was removed and the crude product was dissolved in MeOH (128 mL) and treated with K₂CO₃ (15.9 g, 115 mmol). The mixture was stirred for 0.5 h, then the solvent was evaporated. The crude product was purified by chromatography to afford 3, 15.4 g (83%), diastereomeric mixture. IR (film) v 3848, 3740, 3660, 3369, 3032, 2929, 2858, 1605, 1455, 1310, 1205, 1103, 1029, 908 cm⁻¹; ¹H NMR δ 0.88 (m, 6 H, CH₃), 1.21 - 1.68 (m, 12 H, CH₂), 2.68 (d, ³J = 3.6 Hz, 2 H, epoxy OCH₂), 2.85 (dt, ³J = 3.6, 6 Hz, 1 H, epoxy OCH), 3.22 (dd, ³J = 5, 11 Hz, 1 H, OCH), 3.34 - 3.57 (m, 3 H, OCH, PhCH₂OCH₂), 4.52 (s, 2 H, PhCH₂), 7.34 (m, 5 H, arom. H); ¹³C NMR δ 9.63, 14.10 (-, CH₃), 22.62, 24.90, 25.14, 29.47, 31.81, 33.39 (+, CH₂), 45.93 (+, epoxy OCH₂), 53.83 (-, epoxy OCH), 72.59 (+, PhCH₂), 78.12, 79.03 (-, OCH), 127.62, 128.32 (-, arom. C), 138.43 (+, arom. C); MS m/z 320 (M⁺, 2), 289 (5), 199 (25), 179 (21), 177 (14), 159 (10), 142 (30), 107 (100).

(2R,3S)-3-[-1(Benzyloxy)-2-butoxy]-1,2-nonandiol (4). A solution of 3 (14.4 g, 45 mmol) and HClO₄ (0.9 mL, 70%) in DMSO/H₂O (2:1) (450 mL) was stirred for 3 h at 80 °C. E was added and the organic layer was extracted with H₂O, dried and evaporated. The crude product was purified by chromatography (E/PE) to give 4 as a diastereomeric mixture, 12.18 g (80%), clear oil. IR (CHCl₃) v 3402, 3066 - 2858, 1605, 1497, 1455, 1367, 1093, 907 cm⁻¹; ¹H NMR δ 0.90 (m, 6 H, CH₃), 1.19 - 1.77 (m, 12 H, CH₂), 2.48 - 2.77 (br. m, 2 H, 2 OH), 3.41 - 4.00 (br. m, 7 H), 4.53/4.58 (2 x s, 2 H, PhCH₂), 7.34 (m, 5 H, arom. H); ¹³C NMR δ 9.72/9.79,

14.09/14.11 (-, CH₃), 22.61/22.67, 24.73, 25.33/25.65, 29.49/29.66, 30.75/31.40, 31.79/31.86 (+, CH₂), 62.90/63.37 (+, CH₂OH), 72.14/72.64 (+, PhCH₂OCH₂), 72.78/72.86 (-, CHOH), 73.32/73.52 (+, PhCH₂), 78.72/79.86, 81.51 (-, OCH), 127.60, 127.96, 128.02, 128.32, 128.50 (-, arom. C), 137.31, 138.19 (+, arom. C); MS *m/z* 338 (M⁺, 1), 200 (13), 187 (19), 116 (35), 108 (48), 91 (100).

(2R)-2-[1-Benzyloxy]-2-butoxy]-octanol (5). To a solution of 4 (9.82 g, 29 mmol) in MeOH (225 mL) was added a solution of NaIO₄ (8.70 g, 40.6 mmol) and (NH₄)₂SO₄ (4.98 g, 37.7 mmol) in H₂O (225 mL) at 0 °C. After 45 min H₂O (300 mL) was added and the aqueous phase was extracted with E/PE. The organic layer was dried (MgSO₄) and the solvent removed to give aldehyde (9 g, 100%). 7 g (22.9 mmol) of the crude product was dissolved in MeOH (50 mL) and NaBH₄ (1.04 g, 27.5 mmol) was added in portions at 0 °C. After 15 min MeOH was evaporated and the residue was diluted with H₂O. The aqueous layer was extracted with E and the organic layer dried (MgSO₄) to afford after removal of the solvent alcohol 5, 7 g (100%), oil, diastereomeric mixture. IR (CHCl₃) v 3436, 3066 - 2858, 1605, 1497, 1455, 1367, 1207, 1096, 736 cm⁻¹; ¹H NMR δ 0.90 (m, 6 H, CH₃), 1.17 - 1.69 (m, 12 H, CH₂), 2.10 (br. m, 1 H, OH), 3.35 - 3.72 (br. m, 6 H, OCH, OCH₂), 4.53/4.58 (2 x s, 2 H, PhCH₂), 7.33 (m, 5 H, arom. H); ¹H NMR (DMSO-d₆) δ 4.39 (t, ³J = 4 Hz, 1 H, OH); ¹³C NMR δ 9.79/9.93, 14.11 (-, CH₃), 22.63, 25.56, 25.76, 29.51, 31.81, 32.41 (+, CH₂), 65.66 (+, CH₂OH), 72.93 (+, PhCH₂OCH₂), 73.50 (+, PhCH₂), 79.62, 80.68 (-, OCH), 127.81, 128.46 (-, arom. C), 137.51, 138.27 (+, arom. C); MS m/z 308 (M⁺, 1), 278 (2), 129 (14), 91 (100).

(3R)-3-[1-(Benzyloxy)-2-butoxy]-1, 1-bis-(phenylsulfonyl)-nonane (6). To a mixture of 5 (6.77 g, 22 mol), PPh₃ (17.3 g, 66 mmol) and imidazol (4.64 g, 68.2 mmol) in E (44 mL) and CH₃CN (15 mL) was added iodine (8.66 g, 68.2 mmol) portionwise at 0 °C. The reaction mixture was heated to reflux for 1 h, then cooled to r.t. and filtered. The residue was diluted with PE, filtered, extracted with aq. Na₂S₂O₃ solution and brine and dried (MgSO₄). The solid/oil-mixture was diluted with PE, filtered and evaporated to give a mixture of iodide and PPh₂ (4: 6 by GC). A solution of this crude product and n-Bu₄NCH(SO₂Ph)₂¹¹ (32.3 g, 59.4 mmol) in DMF/benzene (2:1) (100 mL) was heated for 6 h to 130 °C. After cooling to r.t. E was added, the organic layer extracted with 1 N HCl and brine and dried (MgSO₄). The solvent was removed and the crude product purified by chromatography to afford 6, 8.85 g (69%), diastereomeric mixture. IR (CHCl₃) v 3068 - 2860, 1601, 1448, 1332, 1228, 1152, 1081, 829 cm⁻¹; ¹H NMR δ 0.72 (t, ³J = 7 Hz, 3 H, CH₃), 0.88 (t, ³J = 6 Hz, 3 H, CH₃), 1.13 - 1.66 (m, 12 H, CH₂), 2.20 (br. m, 2 H, CH₂CH(SO₂Ph)₂), 3.23 (dd, ${}^{3}J = 5$ Hz, ${}^{2}J = 10$ Hz, 1 H, PhCH₂ OCHH), 3.27 (m, 1 H, OCH), 3.51 (dd, ${}^{3}J = 3$ Hz, ${}^{2}J = 10$ Hz, 1 H, PhCH₂OCHH), 3.77 (m, 1 H, OCH), 4.50 $(2 \times 8, 2 \text{ H. PhCH}_2), 5.38 \text{ (dd. } ^3J = 2.5, 8 \text{ Hz. } 1 \text{ H. C}H(SO_2Ph)_2), 7.28 - 8.10 \text{ (m. } 15 \text{ H. arom. H)}; ^{13}C \text{ NMR } \delta$ 9.66, 14.07 (+, \vec{CH}_3), 22.50/23.19, 24.43/24.85, 29.37/29.42, 31.02, 31.67/31.72, 33.86/34.91 (+, \vec{CH}_2), 72.90 (+, PhCH₂OCH₂), 73.60 (+, PhCH₂), 73.62/74.76, 77.63/79.10 (-, OCH), 79.79/79.91 (-, CH(SO₂Ph)₂), 127.58 - 138.36 (11 signals, arom. C); FAB-MS m/z 588 (M⁺, 4), 587 (1).

(3R)-3-[1-(Hydroxy)-2-butoxy]-1,1-bis-(phenylsulfonyl)-nonane (7). To an ice-cold solution of 6 (8.85 g, 15.2 mmol) and Me₂S (6.7 mL, 91.2 mmol) in CH₂Cl₂ (100 mL) was added BF₃·Et₂O (11.2 mL, 91.2 mmol) and BF₃·Et₂O (11.2 mL, 91.2 mmol) was added. After stirring for 60 h at r.t. the solvent and Me₂S were removed first by a stream of N₂ and then by evaporation at 12 torr. The residue was dissolved in CH₂Cl₂ and extracted with sat. aq. NaHCO₃ solution (caution! exothermic reaction). The organic layer was dried (MgSO₄) and the solvent removed under reduced pressure. The crude product was purified by column chromatography (E/PE) to give 7, 6.33 g (84%), highly viscous oil, diastereomeric mixture. IR (CHCl₃) v 3580, 3068 - 2860, 1448, 1332, 1228, 1152, 1080, 828 cm⁻¹; ¹H NMR δ 0.88 (m, 6 H, CH₃), 1.13 - 1.68 (m, 12 H, CH₂), 2.07 - 2.41 (m, 2 H, CH₂CH(SO₂Ph)₂), 3.20 - 3.42 (m, 2 H, CH₂OH), 3.51, 3.76 (m, 2 H, OCH), 4.71 - 5.33 (dd, ³J = 2.5, 8 Hz, 1 H, CH(SO₂Ph)₂), 7.51 - 8.06 (m, 10 H, arom. H); ¹³C NMR δ 9.64/9.81, 14.07 (-, CH₃), 22.56/23.18, 24.41/24.85, 29.38/29.46, 31.05, 31.69/31.73, 33.87/34.92 (+, CH₂), 33.30/34.00 (+, CH₂CH(SO₂Ph)₂), 63.87/63.93 (+, CH₂OH), 73.43/74.77, 77.65/79.16 (-, OCH), 79.80/79.90 (-, CH(SO₂Ph)₂), 128.99, 129.11, 129.37, 129.69, 129.76, 134.55, 134.72 (-, arom. C), 137.89, 137.97 (+, arom. C); FAB-MS m/z 497 (M⁺, 27), 407 (100).

Formylated ether 8. To a solution of 7 (6.33 g, 12.76 mmol), Et₃N (8.9 mL, 63.8 mmol) and abs. DMSO (15.1 mL) in CH₂Cl₂ (61.4 mL) was added SO₃·Py (8.12 g, 51.0 mmol) in portions at 0 °C. The mixture was stirred for 3.5 h, then diluted with CH₂Cl₂ and extracted with 2 N HCl and brine. The organic layer was dried (MgSO₄), the solvent removed and the sensitive crude product stored without further purification at -20 °C. Yield: 6.5 g (103%, small solvent residues), slightly cloudy oil, diastereomeric mixture. IR (CHCl₃) v 3068 -

2860, 1735, 1584, 1448, 1328, 1312, 1224, 1144, 1076, 1000, 964, 632 cm⁻¹; ¹H NMR δ 0.88 (m, 6 H, CH₃), 1.10 - 1.41 (m, 10 H, hexyl CH₂), 1.81/2.40 (2 x br. m, 2 H, ethyl CH₂), 3.11/3.40 (m, 2 H, CH₂CH(SO₂Ph)₂), 3.71, 4.01 (m, 2 H, OCH), 4.61 (br. d, ${}^{3}J = 8 - 9$ Hz, 1 H, CH(SO₂Ph)₂), 7.48 - 8.22 (m, 10 H, arom. H), 9.10 (d, ${}^{3}J = 5$ Hz, 1 H, CHO); FAB-MS m/z 495 (M⁺, 100), 477 (20), 295 (32), 102 (97).

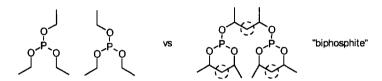
4-[(3R)-1,1-Bis-(phenylsulfonyl)-3-nonoxy]-(E)-2-hexenoic acid, ethyl ester (9). To a suspension of NaH (428 mg, 17.8 mmol) in THF (20 mL) was added P(OEt)₃ (3.42 mL, 17.3 mmol) at 0 °C. After 15 min a solution of 8 (6.4 g, ca. 11.5 mmol) in THF (60 mL) was added. After a further 15 min E was added, the organic layer was extracted with H₂O, dried (MgSO₄) and evaporated. The residue was filtered through a column and dried under reduced pressure (0.1 torr) to afford 9, 7.35 g (113%, solvent could not be removed completely). A small amount was purified for spectral data (diastereomeric mixture 2.6 : 1). IR (CHCl₃) v 3068 - 2860, 1712, 1656, 1584, 1448, 1332, 1312, 1276, 1228, 1160, 1036, 908 cm⁻¹; ¹H NMR δ 0.88 (m, 6 H, CH₃), 1.12 - 1.65 (m, 15 H, CH₂, CO₂CH₂CH₃), 2.26 (dd, 3J = 4, 6 Hz, 2 H, CH₂CH(SO₂Ph)₂), 3.64 - 3.92 (m, 2 H, OCH), 4.21 (q, 3J = 7 Hz, 2 H, CO₂CH₂CH₃), 4.61/4.71 (dd, 3J = 4, 6 Hz, 1 H, CH(SO₂Ph)₂), 5.75/5.90 (dd, 4J = 1.5 Hz, 3J = 16 Hz, 1 H, EtO₂CCH=CH), 6.60/6.73 (dd, 3J = 6, 16 Hz, 1 H, EtO₂CCH=CH), 7.51 - 8.06 (m, 10 H, arom. H); 13 C NMR δ 9.31/9.38, 14.05, 14.25 (-, CH₃), 22.52, 24.01/24.32, 26.89/30.00, 29.25/29.40, 30.93, 31.64/31.68 (+, CH₂), 33.32/34.20 (+, CH₂CCH(SO₂Ph)₂), 74.02/74.67, 77.38/77.81 (-, OCH), 79.75/80.03 (-, CH(SO₂Ph)₂), 121.62/123.23 (-, EtO₂CCH=CH), 129.10, 129.22, 129.28, 129.41, 129.54, 134.61, 134.73 (-, arom. C), 137.86, 137.93 (+, arom. C), 147.60/148.19 (-, EtO₂CCH=CH), 165.89/166.22 (+, CO₂); FAB-MS m/z 565 (M⁺, 5), 407 (100).

Allylic alcohol 10. To a solution of 9 (7.1 g, 12.6 mmol, solvent-containing crude product, see above) in CH₂Cl₂ (60 mL) was added DIBAH (38.5 mL, 44.1 mmol, 1.2 M solution in hexane) dropwise at -70 °C. After stirring for 20 min at the same temperature the reaction was quenched with sat. aq. NH₄Cl solution and allowed to reach r.t. Carefully 2 N HCl was added to dissolve the solid components. The mixture was diluted with CH₂Cl₂ and extracted with H₂O and brine. The organic phase was dried (MgSO₄) and the solvent removed to give 10, 5.52 g (84%), highly viscous oil, diastereomeric mixture (2.6 : 1). IR (CHCl₃) v 3540, 3040 - 2860, 1448, 1332, 1152, 1080, 908 cm⁻¹; ¹H NMR δ 0.81 (m, 6 H, CH₃), 1.10 - 1.62 (m, 12 H, CH₂), 1.99 (m, 1 H, OH), 2.08 - 2.40 (m, 2 H, CH₂CH(SO₂Ph)₂), 3.70 (m, 2 H, OCH), 4.11 (dd, ⁴J = 1 Hz, ³J = 5 Hz, 2 H, CH₂OH), 4.70 (dd, ³J = 4, 7 Hz, 1 H, CH(SO₂Ph)₂), 5.32 - 5.57 (m, 1 H, CH=CH), 5.72 (ddd, ³J = 5, 11, 16 Hz, 1 H, CH=CH), 7.49 - 8.18 (m, 10 H, arom. H); ¹³C NMR δ 9.69/9.75, 14.08 (-, CH₃), 22.54/24.18, 24.56/25.09, 28.20/28.52, 29.25/29.38, 30.88/31.18, 31.69 (+, CH₂), 34.38/34.66 (+, CH₂CCH(SO₂Ph)₂), 62.49/62.77 (+, CH₂OH), 71.80/73.82, 76.94/79.11 (-, OCH), 80.06/80.28 (-, CH(SO₂Ph)₂), 129.11, 129.36, 129.69, 129.85, (-, arom. C), 131.34/131.47 (-, CH=CH), 131.99/132.12 (-, CH=CH), 134.50/134.66(-, arom. C), 137.77, 137.99 (+, arom. C); FAB-MS m/z 523 (M⁺, 1), 425 (12), 407 (100).

Allylic chloride 11-Cl. To a solution of 10 (5.52 g, 10.6 mmol) and Et₃N (2.22 mL, 15.9 mmol) in CH₂Cl₂ (22 mL) was added slowly MsCl (0.985 mL, 12.7 mmol) at 0 °C. After 0.5 h LiCl (942 mg, 21.2 mmol) and DMF (20 mL) were added and most of the solvent (CH₂Cl₂) was evaporated. The resulting mixture was heated for 15 min to 50 °C. After cooling to r.t. E was added and the organic phase extracted with 2 N HCl and brine. After drying (MgSO₄) and evaporation of the solvent the crude product was purified by column chromatography (E/PE) to give 11-Cl, 4.42 g (77%), highly viscous oil, diastereomeric mixture. IR (CHCl₃) v 3068 - 2860, 1584, 1448, 1332, 1156, 1080, 972 cm⁻¹; ¹H NMR δ 0.89 (m, 6 H, CH₃), 1.13 - 1.61 (m, 12 H, CH₂), 2.23 (br. m, 2 H, CH₂CH(SO₂Ph)₂), 3.69 (m, 2 H, OCH), 4.02/4.08 (2 x d, 3J = 6 Hz, 2 H, CH₂Cl), 4.69 (dd, 3J = 4, 7 Hz, 1 H, CH(SO₂Ph)₂), 5.41 - 5.82 (m, 2 H, CH=CH), 7.50 - 8.05 (m, 10 H, arom. H); ¹³C NMR δ 9.64, 14.10 (-, CH₃), 22.56, 24.03/24.56, 28.06/28.56, 29.26/29.41, 30.96, 31.72 (+, CH₂), 33.20/34.70 (+, CH₂CCH-(SO₂Ph)₂), 44.09/44.34 (+, CH₂Cl), 72.78/74.32, 78.13/79.56 (-, OCH), 80.07/80.31 (-, CH(SO₂Ph)₂), 127.73 (-, CH=CH), 129.09, 129.15, 129.36, 129.81, 134.52, 134.69, 134.78 (-, arom. C), 135.79 (-, CH=CH), 137.75, 138.10 (+, arom. C); FAB-MS m/z 541 (M⁺, 1), 425 (17), 407 (100).

4-[(3R)-1,1-Bis-(phenylsulfonyl)-3-nonoxy]-(E)-2-hexenyl methyl carbonate (11-carbonate). To a solution of 10 (867 mg, 1.66 mmol) and Et₃N (0.694 mL, 4.98 mmol) in CH₂Cl₂ (3.5 mL) ethyl chloroformate (0.256 mL, 3.32 mmol) was added dropwise at -20 °C. The mixture was stirred for 1 h at -20 °C, then allowed to reach r.t. and stirred for a further 1 h. CH₂Cl₂ was added and the organic layer extracted with 2 N HCl and sat. aq. NaHCO₃ solution. The organic phase was dried (MgSO₄), evaporated, and the residue chromatographed (E/PE) to afford desired 11-carbonate (105, mg, 11%), 11-Cl (357 mg, 40%) and starting material (258 mg, 30%). Spectrocopic data of 11-carbonate, diastereomeric mixture. IR (CHCl₃) v 3068 - 2860, 1812, 1748, 1584, 1448,

1332, 1272, 1156, 1080, 976, 948 cm⁻¹; ¹H NMR δ 0.86 (m, 6 H, CH₃), 1.11 - 1.65 (m, 12 H, CH₂), 2.22 (m, 2 H, CH₂CH(SO₂Ph)₂), 3.58 - 3.76 (m, 2 H, OCH), 3.80 (s, 3 H, OCH₃), 4.58 (d, ³J = 4.5 Hz, 2 H, OCH₂), 4.67 (dd, ³J = 4, 7 Hz, 1 H, CH(SO₂Ph)₂), 5.40 - 5.77 (m, 2 H, CH=CH), 7.51 - 8.05 (m, 10 H, arom. H); MS (160 °C) m/z 551 (M⁺, 1), 407 (32), 265 (16), 157 (70), 82 (100).


(2S,8S)-4,4-Bis-(phenylsulfonyl)-8-ethyl-2-hexyl-2,3,4,5,8-pentahydro-oxocin (12). A flame-dried twonecked flask was charged with Pd₂(dba)₃CHCl₃ (297 mg, 5 mol%) and "biphosphite" 5 (1.27 g, 60 mol%). The apparatus was evacuated and refilled with N_2 (3x), to exclude any oxygen during reaction. THF/dioxane (2:1) (150 mL) was added and the mixture was stirred. After 10 min the colour of the dark violet solution turns to pale vellow. The colour indicates the formation of the desired Pd(0) complex. The reaction mixture was heated to reflux and deprotonated 11-Cl {KH (755 mg, 6.61 mmol, 35% dispersion in mineral oil) was freed from oil by washing with PE. Chloride 11-Cl (3.1 g, 5.73 mmol) in THF/dioxane (2:1) (100 mL) was added under N₂ and the mixture was stirred, until it was homogeneous (15 - 60 min)} was added as a clear solution via syringe drive over a period of 6 h. After complete addition the reaction mixture was heated to reflux for a further 1 h. The solvent was removed and the crude product was purified by chromatography to afford semi-solid 12 (1.66 g, 57%), A (346 mg), B (121 mg), and C (105 mg) in total 77% yield (12: A: B: C = 15.8: 3.3: 1.15: 1; 8-ring : 6--ring = 2.9 : 1). Spectroscopic data of 12: IR (CHCl₃) v 3072 - 2856, 1448, 1328, 1224, 1144, 1100, 1076, 996 cm⁻¹; ¹H NMR δ 0.91 (m, 6 H, CH₃), 1.20 - 1.72 (m, 12 H, hexyl CH₂, ethyl CH₂), 2.20 (br. d, ²J = 15 Hz, 1 H, $CH_2C(SO_2Ph)_2$), 2.64 (br. m, 2 H, $CH_2C(SO_2Ph)_2$), 4.08 (br. t, ${}^3J = 5$ Hz, 1 H, OCH), 4.19 (br. dd, ${}^3J = 4$, 15 Hz, 1 H, =CHCH₂C(SO₂Ph)₂), 4.63 (m, 1 H, OCH), 5.59 (m, 2 H, HC=CH), 7.60 (m, 6 H, arom. H), 8.03 (m, 4 H, arom. H); ¹H NMR (C₆D₆) δ 0.90 (m, 6 H, CH₃), 1.10 - 1.58 (m, 12 H, hexyl CH₂, ethyl CH₂), 2.38 (dd, ${}^{3}J = 1$ Hz, ${}^{2}J = 16$ Hz, 1 H, $CH_{2}C(SO_{2}Ph)_{2}$), 2.81 (br. m, 2 H, $CH_{2}C(SO_{2}Ph)_{2}$), 3.88 (m, 1 H, $OCHC_{6}H_{13}$), 4.52 (br. dd, ${}^{3}J$ = 8 Hz, ${}^{2}J$ = 14 Hz, 1 H, =CHC H_{2} C(SO₂Ph)₂), 4.94 (m, 1 H, OCHC₂H₅), 5.42 (ddd, ${}^{4}J$ = 1 Hz, $^{3}J = 3$, 11 Hz, 1 H, OCHCH=CH), 5.69 (ddt, $^{4}J = 1$ Hz, $^{3}J = 8$, 11 Hz, 1 H, OCHCH=CH), aromatic signals are not useful (solvent C_6D_6); ¹³C NMR δ 9.56, 14.08 (-, CH₂), 22.53, 25.79, 26.38, 28.93, 29.12, 31.68 (+, hexyl CH₂, ethyl CH₂), 31.95 (+, OCHCH₂), 33.88 (+, =CHCH₂), 72.14 (-, OCH), 72.40 (-, OCH), 92.85 (+, $C(SO_2Ph)_2$, 121.04 (-, OCHCH=), 128.57, 131.16, 134.45 (-, arom. C), 136.78, 137.61 (+, arom. C), 137.12 (=CHCH₂); FAB-MS m/z 505 (M⁺, 24), 407 (72), 363 (100). Anal. Calcd for C₂₇H₃₆O₃S₂: C, 64.28; H, 7.14. Found: C, 64.39; H, 7.44.

(2S,8S),-4,4-Bis-(phenylsulfonyl)-8-ethyl-2-hexyl-oxocane (13). A solution of 12 (250 mg, 0.496 mmol) and Wilkinson catalyst (300 mg) in abs. benzene (20 mL) was hydrogenated (4 bar) for 23 h at 40 - 50 °C. The solvent was removed and the residue chromatographed (E/PE, 1 : 4) to afford 13, 235 mg (94%), semi-solid substance. IR (CHCl₃) v 3072 - 2856, 1584, 1448, 1328, 1208, 1136, 1076, 972, 908 cm⁻¹; ¹H NMR δ 0.90 (m, 6 H, CH₃), 1.18 - 1.73 (m, 14 H, CH₂), 1.81 - 2.10 (m, 3 H, CH₂, CH₂C(SO₂Ph)₂), 2.24 (m, 1 H, CH₂C(SO₂Ph)₂), 3.12 (dd, ³J = 8 Hz, ²J = 16 Hz, 1 H, CH₂C(SO₂Ph)₂), 3.44 (m, 1 H, OCH), 3.76 (dd, ³J = 12 Hz, ²J = 16 Hz, 1 H, CH₂C(SO₂Ph)₂), 4.54 (m, 1 H, OCH), 7.48 - 8.17 (m, 10 H, arom. H); ¹³C NMR δ 9.82, 14.07 (-, CH₃), 20.97, 25.54, 26.29, 26.54, 28.55, 29.91, 30.52, 31.68 (+, CH₂), 33.55, 34.72 (+, CH₂C(SO₂Ph)₂), 72.19, 73.43 (-, OCH), 93.56 (+, C(SO₂Ph)₂), 128.47, 131.16, 131.33, 134.34, 136.11 (-, arom. C), 136.52, 137.34 (+, arom. C); FAB-MS m/z 507 (M⁺, 100), 251 (20), 143 (37).

(2S,8S)-Lauthisan (14). To a solution of 13 (215 mg, 0.425 mmol) and Na₂HPO₄ (483 mg, 3.40 mmol) in abs. MeOH (6 mL) and THF (3 mL) was added NaHg (ca. 10 g, 6%) at r.t. until the starting material was desulfonated completely. The reaction mixture was diluted with E and extracted with 1 N HCl, sat. aq. NH₄Cl solution and brine. The organic layer was dried (MgSO₄), the solvent evaporated and the residue purified by chromatography (E/PE) to give 14, 79 mg (82%), oil; $[\alpha]_D^{19} = -13.8$ (c = 0.09, CHCl₃) (Lit⁸: (2R,8R)-lauthisan, $[\alpha]_D^{25} = +13.7^{\circ}$). ¹H NMR (C₆D₆) δ 0.88 - 0.98 (m, 6 H, CH₃), 1.24 - 1.78 (m, 22 H, CH₂), 3.41 - 3.61 (m, 2 H, OCH); ¹³C NMR (C₆D₆) δ 10.65, 14.33 (CH₃), 23.07, 26.24, 26.47, 26.51, 27.12, 29.94, 30.05, 32.34, 32.56, 32.78, 37.14 (+, CH₂), 74.16, 74.86 (-, OCH); FAB-MS m/z 226 (M⁺, 17), 225 (100); HRMS calcd. for C₁₃H₃₀O 226.2297, found 226.2310.

REFERENCES AND NOTES

- New address: Bayer AG, Pharma-Forschung, D-42096 Wuppertal, Germany
- Throughout this paper the Maehr convention is used to designate stereochemistry (Maehr, H. J. Chem. Ed. 1985, 62, 114); see preceding paper.
- ¹ Isolation and nomenclature: Blunt, J. W.; Lake, R. J.; Munro, M. H. G. Austral. J. Chem. 1984, 37, 1545; Blunt, J. W.; Lake, R. J.; Munro, M. H. G.; Yorke, S. C. Austral. J. Chem. 1981, 34, 2393.
- Synthesis of racemic and enantiopure lauthisan: a) Nicolaou, K. C.; McGarry, D. G.; Somers, P. K.; Vale, C. A.; Furst, G. T. J. Am. Chem. Soc. 1987, 109, 2540; b) Paquette, L. A.; Sweeney, T. J. J. Org. Chem. 1990, 55, 1703; c) Tsushima, K.; Murai, A. Chem. Lett. 1990, 761; d) Carling, R. W.; Clark, J. S.; Holmes, A. B. J. Chem. Soc., Perkin Trans. I 1992, 83; e) Kotsuki, H. Synlett 1992, 97.
- ³ Brandes, A.; Eggert, U.; Hoffmann, H. M. R. Synlett 1994, 745.
- 4 Preceding paper.
- 5 Tying up the ethyl groups of P(OEt)₃ by methylene groups (circled) as in the "biphosphite" reduces the steric demand of the bidentate ligand and decreases cone angles (cf. Tolman, C. A. Chem. Rev. 1977, 77, 313).

Reduced steric demand of the ligand on palladium favours the cyclization product stemming from nucleophilic attack at the simple methylene terminus of the (η^3 -allyl)palladium complex; cf. Trost, B. M.; Verhoeven T. R. J. Am. Chem. Soc. 1980, 102, 4743; Trost, B. M.; Vos, B. A.; Brzezowski, C. M.; Martina, D. P. Tetrahedron Lett. 1992, 33, 717.

- ⁶ Cf. also Trost, B. M.; Lee, P. H. J. Am. Chem. Soc. 1991, 113, 5076.
- Furthermore, it seems possible that competition between 8-membered ring complex 12-PdL₂ and 6-membered iii is decided by kinetically controlled reductive elimination, with retention of configuration, of an oxapalladacycle. Such a reaction is, of course, different from the S_N2-like formation of A, B, C and opens the way to new rules of stereocontrol and stereoconvergence.
- Paquette, L. A.; Sweeney, T.J. Tetrahedron 1990, 46, 4487.
- The term stereospecific is often used in another sense. See Eliel, E. L. Stereochemistry of Carbon Compounds, McGraw Hill, New York, 1962.
- ¹⁰ Gao, Y.; Hanson, R. M.; Klunder, J. M.; Ko, S. Y.; Masamune, H.; Sharpless, K. B. J. Am. Chem. Soc. 1987, 109, 5507.
- Preparation of n-Bu₄NCH(SO₂Ph)₂: A suspension of bis(phenylsulfonyl)methane (7.12 g, 24 mmol), n-Bu₄NHSO₄ (9.78 g, 28.8 mmol) and NaOH (2.4 g, 60 mmol) in H₂O (20 mL) was heated to 120 °C for a short time, then cooled and extracted with CH₂Cl₂. The organic layer was dried (MgSO₄) and evaporated to give a yellow solid, which was dried under reduced pressure (0.05 torr) and pulverized (11.75 g, 91%).

(Received in Germany 16 September 1994; accepted 26 October 1994)